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The restricted rotor: the effect of topology on quantum 
mechanics 

Sami M AI-Jaber and Walter C Henneberger 
Department of Physics and hlolecular Science Program, Southern [Ilinois University, 
Carbondale ,  I L  62901. USA 

Recelled 8 March 1990 

Abstract. We consider the case of a limited rigid rotor, controlled by passive mechanical 
devices on a circle located at H = 0 and  H = TT. The devices have the effect of restricting 
the particle motion to the interval 10, 3 7 1 .  This s js tem,  which cannot be described by a 
Hamiltonian on (0, 2 7 ) .  is compared with a Hamiltonian system having delta function 
barriers at H = 0 and  H = TT. Many of the wavefunctions of the system having systematic 
reflections are  the same as those of the Hamiltonian system with a reflection probability 
of $ .  Finally. the effect of a whisker of flux at the origin (Aharonov-Bohm effect) is 
discussed in the case of the non-Hamiltonian system. 

1. The limited rigid rotor 

Topological considerations are becoming increasingly important in the discussion of 
interference questions. This is true, in  particular, for problems involving the Feynman 
path integral method [ l ,  21. One obtains a solution of the Schrodinger equation on a 
covering space, as proposed long ago by Schulman [3]. There have been several 
discussions of applications of the path integral method to problems involving multiple 
paths around the origin [2,4,  51. 

The purpose of this work is to consider the consequences of a rather straightforward 
problem, for which the solution on the covering space can be written down. The path 
integral method necessarily yields the same solutions as those given here. 

We consider a particle of mass m constrained to move on a ring of radius a, but 
limited to motion such that the coordinate 0 lies between 0 and 3 ~ .  The ring is provided 
with a passive mechanical device permitting the particle to pass the points 0 and 7~ 

only once, moving in a given direction, before being reflected. Such a device is simple 
to design. It may be considered part of the system, not connected with any observation. 
The motion of the wavepacket is then given by $ ( e )  on the covering space (0,3n). 
The Hamiltonian for the rigid rotor is 

and  the stationary states corresponding to the vanishing of $( 8)  at 8 = 0 and 0 = 3~ are 

N 
3 

t j ( ~ ) = ~ s i n - e  

0305-4470~90/132939+06S03 50 1990 IOP Publishing Ltd 2939 



2940 S M Al-Jaber and W C Henneberger 

where N is a positive integer and A is a normalisation factor. The superposition 
principle then induces a solution $(e)  on the physical space 0 s 6 2 7  given by 

o < e C T  

(1 .3)  
T < 0 < 2 T .  

The normalisation factor K,, that normalises $( 6 )  on ( 0 , 2 7 r )  is 

for N =multiple of 3 

- for N = 2 mod 3 .  
+ for N =  1 mod 3 (1.4) 

2. The double delta function potential 

In the limited rotor problem of section 1, the particle experiences infinite forces at 
e = 0 and e = T according to a well defined rule. Since the forces are not random, the 
system is not, strictly speaking, a Hamiltonian one, although a Hamiltonian describes 
the motion in the covering space. Measurements are made in the space 0 < 8 < 27r, 
unless definite information concerning the winding number is also given. In  the absence 
of such information, one must superpose the wavefunction on (0, T )  with the wavefunc- 
tion on ( 2 ~ ,  3 H ) .  The reader may compare the result for double-slit diffraction with 
the case in which one has definite information concerning which slit the particle has 
passed through [6,7]. 

In this section we consider the Hamiltonian system that most closely approximates 
the non-Hamiltonian one of the previous section. 

We consider a particle of mass m moving in a double delta function potential 
defined on the interval (- H ,  T )  as 

v(e)= v,[~(e)+s(e-~)l (2.1) 

where V, is the strength of the potential. Symmetric solutions are 

where A ,  is a normalisation factor, q is a quantum number, and S I  and S 2  are phase 
shifts. The conditions $(e) = $(-e) and IL(0') = t,h(O-) give S 2  = - S I ,  so if we let 
6 = 6, = -az, then 

The time-independent Schrodinger equation for this problem is 

Integrating both sides of ( 2 . 4 )  from - E  to + E ,  where E is infinitesimal, we find 

C 
tan S = -- 

4 
with c = mV,a'/ A ' .  
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To find the allowed values of q, we integrate (2 .4)  from 7- to 7~~ and use (2.5) to 
get 

q2-c’ 
cot( q7r) = -. 

2cq 
(2.6) 

The normalisation factor A, in (2.2) is given by 
- I / ?  

( 2 . 7 )  1 1 
(sin 2( q n + S )  -sin 26)  . 

We define the reflection coefficient of the delta potential in the usual way. A plane 
wave incident on one side of the potential will be partially reflected and partially 
transmitted. In the incident region 

= e’@ + D e-’q* 

and in the transmitted region 

+ 1 1  = 13 elqH. 

Matching the boundary conditions 

gives D = -ic/(  q - ic) ,  where C = mV,,a’/ h’. The reflection coefficient is R = ID/’; 
therefore 

If we define A > 1 such that R = l /A then from (2.8) 

and (2.5) and  (2.6) yield 

1 
t an t i=+-  JFi 

and 

(2.10) 

(2.11) 

Since q is a n  angular momentum eigenvalue, the -q  is also, because of the symmetry 
of the problem. We therefore need to consider only positive q. Hence, in (2.11), n is 
a non-negative integer for the + sign and  a positive integer for the - sign. Note that, 
for a given A, each value of q corresponds to a different Hamiltonian since H = H (  Vo).  
Hence, the symmetric solutions in (2 .3)  become 

A,, cos( q 8 )  * sin( q 0 )  0 < 8 > i r  
V A  { JFi cos( qe )+s in (  q ~ )  (2.12) 

where the lower sign corresponds to negative 6 and the upper sign corresponds to 
positive 6. 

- 1 ~ < 8 < 0  
$ ( e ) = ?  
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To find +(e) on the (0,2n-) space, we map $ (e )  on the ( - T ,  0)  space to the ( T , ~ T )  

space by letting 6 + 2.rr - 0. Therefore; 

(2.13) *(')=z i- %/=cos q (27 i -O) i s in  q ( 2 7 i - 0 )  

We wish to compare the result of (2.13) with the result of section 1. One might argue 
that the appropriate reflection coefficient R should be i. Consider the device that 
allows the particle to pass the point 6 = 0. The device always allows the particle to 
pass in the counter-clockwise direction. When the particle approaches 6 = 0 in the 
clockwise direction, it is reflected half the time. We therefore expect that the 
Hamiltonian system that approximates the non-Hamiltonian one of section 1 has 
barriers at 0 = 0 and 6 = n- that give a reflection coefficient of R = a .  This implies that 
A =4 in (2.13). 

A n  V'A - 1 cos( q 0 )  F sin( q 6 )  0 < 8 < T  
x < O < 2 ~ .  

Substitute A = 4  in equations (2.7) and (2.11) to yield 

q = n F \  (2.14) 

and  

(2.15) 

Therefore, the symmetric stationary states become 

A,, cos( n .;)O T sin( n T : ) 8  O < O < T  
(2.16) 

where the lower sign corresponds to negative S and the upper sign corresponds to 
positive S .  

It is interesting to compare (2.15) and (2.16) with (1.3) and (1.4) of the previous 
section. I f  we set N = 3 n  T 1 in equations (2.15) and (2.16), we get 

2 i ~ c o s [ ( n F : ) ( 2 . r r F 0 ) ] * s i n [ ( n F ~ ) ( 2 n - F 6 ) ]  x < 8 < 2 5 1  * ( e )  =- 

(2.17) 

and, with some algebraic manipulation, 
N N 

3 
sin - 8 +sin - ( 0  + 2 ~ )  ~ < O < T  

(2.18) 
Isin 8 T < 0 < 2 7 T .  

&\  ( 0 )  = F A \  

It is remarkable that the delta function system gives exactly the same wavefunctions 
as the non-Hamiltonian case. In this section, the reflection coefficient is energy 
dependent, while in section 1 it is not. The equivalence found here is valid only for 
a barrier strength appropriate to the particle energy. We note that, for any barrier 
height, the wavefunctions for which N is a multiple of 3 have the same functional 
form in the Hamiltonian case as in the non-Hamiltonian one. However, the amplitudes 
are different on different sides of the barrier in the non-Hamiltonian case. 

3. The Aharonov-Bohm effect 

It is a natural extension of the considerations of section 1 to consider (1.1) modified 
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Figure 1.  $* plotted against 0:  N = 1, M =3 .  Figure 2. I,/J' plotted against 0:  N = 3 ,  M = 3 
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M = 3 .  Figure 4. I,/J' plotted against 8: N = 6, M = 3. 
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Figure 5. l lr2 plotted against 0:  N = 5 ,  M = S. 

by a vector potential 

A Q  

A ( r ,  e )  = e-. 
2 r r  (3.1) 

If, using Aharonov and Bohm [8], we define CY = -e@,/ch, where Q is the flux contained 
in a whisker along the z axis and h is Planck's constant, then the minimal coupling 
leads to 

for stationary states. The solutions of (3.2) are well known [9] to be $( 0 )  = $,( e )  e-iaH, 
where Go( e )  is the solution corresponding to zero flux. The G,( 0)  defined on ( 0 , 2 r )  
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have a flux-dependent norm. These functions differ considerably from the zero flux 
solutions, and  in some cases are localised in the interval ( 77, 277) by the flux. Examples 
of the effect of flux, and  of the ‘Aharonov-Bohm localisation’ are given in figures 1-5. 
It is straightforward to generalise the theory to the case of $( 0 )  limited to the interval 
(0, MT). In all figures, M is the multiple of 77 through which the particle travels 
before it is reflected, N is the quantum number, and the curves are for different values 
of the parameter cy = 0 (*), 0.25 (O), 0.50 (A).  So, for the general case: 

4. Discussion 

The limited rigid rotor and  the double delta function potential discussed here are 
one-dimensional problems. In these, and  similar problems, the wavefunction overlaps 
itself in the physical space, with contributions coming from different winding numbers. 
In the case of the limited rigid rotor, the wavefunction in the (0,277) physical space 
is determined by the wavefunctions on the (0,377) space. We find that the 1 mod 3 
and the 2 mod 3 quantum states of the limited rigid rotor coincide with the symmetric 
solutions of the double delta function potential when the reflection coefficient of the 
potential is f .  

A magnetic flux along the z axis has no other effect on the wavefunction in the 
covering space than to modify it by a phase factor. However, the wavefunction is 
profoundly affected by the flux on the physical space (0,277). The wavefunction on 
the physical space must be used to predict the outcome of a position measurement in 
the absence of information concerning the winding number. If the winding number 
is known with certainty, the flux-dependent phase factor has no observable consequen- 
ces. Again, the reader may compare the double-slit diffraction with and  without 
information concerning which slit the particle has passed through. 

The flux-dependent results are illustrated in figures 1-5; in particular, figures 2, 4 
and 5 show Aharonov-Bohm localisation in the case cy = 0.5. In all figures, N is the 
quantum number of (2.2) and M defines the domain of the covering space O S  0 s MT.  
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